A cooperative hyper-heuristic search framework

نویسندگان

  • Djamila Ouelhadj
  • Sanja Petrovic
چکیده

In this paper, we aim to investigate the role of cooperation between low level heuristics within a hyper-heuristic framework. Since different low level heuristics have different strengths and weaknesses, we believe that cooperation can allow the strengths of one low level heuristic to compensate for the weaknesses of another. We propose an agent-based cooperative hyper-heuristic framework composed of a population of heuristic agents and a cooperative hyper-heuristic agent. The heuristic agents perform a local search through the same solution space starting from the same or different initial solution, and using different low level heuristics. The heuristic agents cooperate synchronously or asynchronously through the cooperative hyper-heuristic agent by exchanging the solutions of the low level heuristics. The cooperative hyper-heuristic agent makes use of a pool of the solutions of the low level heuristics for the overall selection of the low level heuristics and the exchange of solutions. Computational experiments carried out on a set of permutation flow shop benchmark instances illustrated the superior performance of the cooperative hyper-heuristic framework over sequential hyper-heuristics. Also, the comparative study of synchronous and asynchronous cooperative hyper-heuristics showed that asynchronous cooperative hyperheuristics outperformed the synchronous ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework

HyFlex (Hyper-heuristic Flexible framework) [15] is a software framework enabling the development of domain independent search heuristics (hyper-heuristics), and testing across multiple problem domains. This framework was used as a base for the first Cross-domain Heuristic Search Challenge, a research competition that attracted significant international attention. In this paper, we present one ...

متن کامل

Crossover control in selection hyper-heuristics : case studies using MKP and HyFlex

Hyper-heuristics are a class of high-level search methodologies which operate over a search space of heuristics rather than a search space of solutions. Hyper-heuristic research has set out to develop methods which are more general than traditional search and optimisation techniques. In recent years, focus has shifted considerably towards cross-domain heuristic search. The intention is to devel...

متن کامل

An Investigation of a Tabu Search Based Hyper-heuristic for Examination Timetabling

This paper investigates a tabu search based hyper-heuristic for solving examination timetabling problems. The hyper-heuristic framework uses a tabu list to monitor the performance of a collection of low-level heuristics and then make tabu heuristics that have been applied too many times, thus allowing other heuristics to be applied. Experiments carried out on examination timetabling datasets fr...

متن کامل

Data Clustering Using Grouping Hyper-heuristics

Grouping problems represent a class of computationally hard to solve problems requiring optimal partitioning of a given set of items with respect to multiple criteria varying dependent on the domain. A recent work proposed a general-purpose selection hyper-heuristic search framework with reusable components, designed for rapid development of grouping hyper-heuristics to solve grouping problems....

متن کامل

Hybridisations within a Graph Based Hyper-heuristic Framework for University Timetabling Problems

A significant body of literature has explored various research directions in hyper-heuristics (which can be thought as heuristics to choose heuristics). In this paper we define a graph based hyper-heuristic (GHH) framework and compare the performance of a number of local search based searching algorithms as the high level heuristics. They are used to search upon permutations of low level graph ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Heuristics

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2010